
December 13, 2016

A Mathematical Formulation of a Product Family

Grady H. Campbell, Jr.
domain-specific.com
Annandale, VA, USA

TABLE OF CONTENTS

ABSTRACT

A product family is an envisioned set of similar
products. Products are similar if they provide similar
solutions to the same or similar problems. The products
comprising a product family can be explicitly specified
and differentiated by a mathematical formulation based
on set and metric space theories. Such a formulation
provides a framework for the systematic engineering of
a product family and an associated mechanism for
deriving any encompassed product, enabling the
streamlined manufacture of customized products.

KEYWORDS

program family · similarity · set theory · metric space ·
product · product family · decision model · domain ·
market.

1. INTRODUCTION

A product family is an envisioned set of similar products,
alternative solutions to one problem or similar solutions
to a set of similar problems . This concept provides a 1

framework for building and evolving a set of high
quality, customized products with effort comparable to
building and maintaining a single product
conventionally.
As a realization of the manufacturing concept of mass
customization, the product family concept derives its
power from focusing developers on problems that are
intuitively similar but that are nevertheless
characterized by diversity, uncertainty, and change.
Each product must be customized to achieve a proper fit
to a particular customer’s specific needs.
The concept of a product family has long been
understood, in practical terms, as the representation in
aggregate of a set of similar products, with an associated
mechanism for deriving instance products from that
representation. After more than 25 years experience
with product families, this paper defines a mathematical
formulation of the product family concept.
The essence of a product is its behavior, the capabilities
realized through its use. This behavior is expressed in
the guise of a “program”. To define the product family
concept, we first present a framework for characterizing
programs as abstract objects and a set of similar
programs as a family. We then integrate these views to
enable representing a program family in the form of a
metric space in terms of differences (i.e., variability)
among instance programs. Finally, we generalize this
formulation of programs and program families to
characterize products and product families as the basis
for the derivation of customized products.

1. INTRODUCTION 1..
2. BACKGROUND 2..
3. A SET THEORETICAL FRAMEWORK FOR PROGRAM

FAMILIES 2..
3.1 ON THE CHARACTERIZATION OF A PROGRAM 2............
3.2 PROGRAMS, ENVISIONED AND REALIZED 3...................
3.3 DISTINGUISHING AMONG PROGRAMS 3.........................
3.4 THE CONCEPTS OF SIMILARITY AND EQUIVALENCE 4...
3.5 DEFINING A PROGRAM FAMILY AS A SET 5....................
3.6 DISTINGUISHING AMONG INSTANCES OF A PROGRAM
FAMILY 5...
3.7 A DECISION MODEL FOR A PROGRAM FAMILY 5...........
4. FORMULATING A METRIC SPACE 6..........................
4.1 OBJECT IDENTITY IN A METRIC SPACE 6.........................
4.2 PSEUDO-METRIC SPACES 7..
5. A DISTANCE METRIC FOR A PROGRAM FAMILY 7..
5.1 A SIMPLE METRIC 7..
5.2 A COMPLEX METRIC 8...
5.3 FURTHER METRIC REFINEMENTS 8.................................
5.4 A STRATEGY FOR DEFINING A PROGRAM FAMILY
METRIC SPACE 8...
5.5 PRACTICAL RELEVANCE OF A PROGRAM FAMILY
METRIC SPACE 9...
6. PRODUCT FAMILIES AS A GENERALIZATION OF

PROGRAM FAMILIES 9..
7. SUMMARY 10...
REFERENCES 10...

 A "product" is some realization of a solution to a problem, corresponding to a point in a universal problem-solution 1

space. “Problem” is used, in a general sense, to mean a set of needs that will be met by a product that conveys a
“solution” to those needs.

�1

December 13, 2016

2. BACKGROUND

In 1972, Dijkstra informally defined the concept of a
(computer software) program family as a set of “related
programs either as alternative programs for the same
task or as similar programs for similar tasks” [1]. He
argued that the proper solution to a problem should be
justified based on an understanding of possible
alternative solutions. Furthermore, as Parnas also
argued [2], when an imperfect understanding of the
problem or a changed or new but similar problem
requires a different solution, that solution should not be
viewed as merely a change in the program's source text
but as a rederivation that retains common aspects of the
prior solution.
In 1990, this viewpoint became a core premise of the
Synthesis methodology (later refined and extended as
the Domain-specific Engineering (DsE) methodology)
for the development and use of product families [3, 4].
The motivation for Synthesis was to define a practical
approach for building multiple similar products for
customers having differing needs, but without the effort
required conventionally to build, tailor, and maintain
each product individually. The approach was also
motivated by the view that engineering is a discipline of
identifying and resolving uncertainties and tradeoffs to
find a suitable fit to needs among feasible alternatives in
a problem-solution space.
Synthesis defined the concept of a product family as a
generalization of the program family concept: although
actual development of a product is concerned primarily
with creating an operational software program that
provides some capability to an enterprise, it entails
creating more than just the program – it also requires
the production of specifications, documentation, test
materials, and installation and training materials. All of
these materials in combination, and mutually consistent
with the software program as developed, constitutes a
product that is then able to be delivered to a customer
and used. Similarly, as a customer’s needs change, not
only the software program but the product as a whole
must be revised/replaced with a product that better
suits then-current needs.
Subsequent “product line” efforts by the Software 2

Engineering Institute and various European initiatives,
as reported in numerous conferences and workshops,
have shown that the product family concept is the basis
for a viable approach to the development of software-

based products. This paper augments those experiences
by providing a definition of the mathematical properties
of a product family.

3. A SET THEORETICAL FRAMEWORK FOR
PROGRAM FAMILIES

A program family is “a set of similar programs". To
understand what this means, we have to understand the
concept of a ‘program’, what is meant by 'similar', and
how such a set is conceived.

3.1 ON THE CHARACTERIZATION OF A PROGRAM

A program is an expression of behavior that a computer
is able to enact . Such expression must be well-formed 3

but can be in any notation that can be translated into a
form that a computer has been built to recognize. An
expression is well-formed if it conforms to the rules of
the conveying notation (being well-formed implies that
the expression is, or can be correctly translated into, an
expression that a computer can enact; it does not imply
that the expression will result in expected (“correct”)
behavior when enacted by a computer).
Walenstein identifies two categories of program
characterization [8]: representational (syntactic) and
behavioral (semantic). These categories provide a
framework not only for describing the different aspects
of a program but also for characterizing how two
programs differ.
Representational characterizations, corresponding to the
physical realization of a program, can be further
divided into:

• Source – the expression (syntax, structure, and
layout) of a program in a human-readable
notation

• Object – the expression (semantics and physical
realization in a computational environment) of a
program in a computer-enactable notation (a
machine-independent intermediate notation or a
machine-dependent binary encoding)

Although a program is most simply understood in
terms of its expression in a given source notation, its
utility comes through its expression in object form that
is then realized as the observable behavior of a
computer. The object form of a program is translated
from and therefore derivative of its source form,
according to the conventions of a targeted
computational environment (i.e., processor, devices, and

 Many people have conflated “product line” with “product family”; this paper retains the original distinction made 2

in Synthesis between the two, that a product line comprises only products that have been built and deployed into use
to solve similar problems. Although a product line may be a subset of a product family, it may include dissimilar
products if they solve similar problems. (This is formally clarified in section 6 below.)

 Although in this context a program is conceived of as instructions to be executed by a computer, we can more 3

generally think of a program as an abstract definition of behavior that a given natural or constructed mechanism is
capable of exhibiting.

�2

December 13, 2016

operating software). A program may have multiple
object form expressions of its source notation if it is
intended to operate in differing environments.
Behavioral characterizations, designating the observable
properties associated with a program, can be divided
into:

• Functional – an expression of a program’s
intended purpose, meaning, properties, and
constraints (e.g., the algorithm, business practices,
and ancillary conventions that it implements)

• Computational – an expression of a program's
observable behavior in a particular operational
context of usage

The essential distinction between these two types of
behavioral characterization is that functional assumes
an idealized approximation of the operational
environment whereas computational presumes a fully
realized environment having empirically predictable
effects on a program’s behavior.
These bipartite divisions (of representational and
behavioral characterizations) are correlated. A
program’s functional properties are a realization of its
source expression: both express intrinsic aspects of a
program independent of computational context.
Likewise, a program’s computational properties are a
realization of its object expression: both are extrinsically
influenced by properties of a targeted computational
environment. The essential challenge of software
engineering is achieving a consistent realization of all
four of these forms of expression.

3.2 PROGRAMS, ENVISIONED AND REALIZED

Although we tend to think of a program as
corresponding to a source expression that engenders
some intended behavior, when we set out to create a
program, we do not know its source form. We imagine a
program that has the anticipated behavior and then
must derive a source expression that, after translation
into a suitable object expression, will cause a computer
to enact that behavior. Even if we have the source
expression of an existing program having similar
behavior, we typically will know only approximately
how its source differs from what is needed to produce
the intended behavior.
If a program’s source and object forms are known, these
can be analyzed to produce behavioral
characterizations. A program whose source form is not
known can still be characterized in terms of its
envisioned behavior, but then corresponding source and
object expressions that will actually produce (an
acceptable approximation of) that behavior must be
discovered.
A program family, whose motivation is the ability to
derive programs with intended behaviors, leverages
both of these perspectives. In this, we are interested in
how differences in source expression correspond to

differences in functionality and how, via object
expressions, these effect differences in computational
behavior. Moreover, our interest is in how, starting with
an envisioned behavior, we can systematically derive a
program that verifiably produces that behavior.
In conventional practice, a needed program is
envisioned and derived by creating an incomplete or
otherwise flawed variant that is then iteratively
modified, creating other variants that differ in order to
enhance or correct particular aspects of its predecessors’
behaviors, until an acceptable variant is achieved.
Similarly, when an existing program misbehaves or no
longer meets changed needs, its replacement is
envisioned as being just the old program but with some
parts of its source expression changed.
Conversely, we can think of such efforts not as
“changing” an existing program but rather as replacing
it with a different, more suitable one, without
consideration of specifically how the source forms of the
two differ. It is as if we had independently realized two
programs that exhibit similar behavior and we are
selecting the one that is the best fit to perceived needs.

3.3 DISTINGUISHING AMONG PROGRAMS

Two programs may be deemed to be more or less alike
depending on which form of expression is used as the
basis for comparison. At first, it may seem sufficient to
presume that differences between two programs are
exactly the differences between their source expressions.
After all, in a constructive sense, the other forms can be
thought of as deriving from the source form. However, a
particular source expression may result in differing
object expressions when translated for different
computational environments. Similarly, programs
having different source expressions (in the same or
different notations) may correspond to identical
functional or object expressions. Even more
significantly, we can express behavioral
characterizations of envisioned programs and explore
differences between them entirely in terms of their
differing behaviors and tradeoffs, without having
existing representational expressions of those programs.
Still, comparing source expressions of programs
provides a good foundation for understanding how
programs can differ. A common prescriptive expression
of the source differences between two programs is the
series of changes required to transform one program’s
source into the other’s. In this, a distinction between
essential and incidental differences warrants
consideration. An incidental difference results when the
same meaning can be expressed in different forms. For
example, in most notations, different spacing would be
an incidental difference between two source
expressions. Similarly, different developers may
differently name and represent the same data. More
significantly, notations often provide alternative ways of
expressing the same functionality; these alternate

�3

December 13, 2016

expressions will differ in appearance but may (or may
not) produce the same behavior depending on how each
form is translated into object form. Consequently, a
capability implemented independently in the same
source notation by two different developers might not
be recognized as similar because of incidental
differences in expression even if they happen to produce
identical behavior. Conversely, a difference would be
considered essential if it results in different behaviors.
Comparing object expressions as an indicator of
program difference, whether for different object
expressions of the same source or for object expressions
of different source expressions, is more complex. A
program’s object expression(s), being derivative of its
source form, is a less reliable conveyor of essential
difference because of the different forms that a
translation can introduce. However as Batory has noted,
correlating behavioral differences between two
programs to source differences can provide a basis for
understanding how changes in a program’s source
representation will affect its behavior [9]. Different
translations from source to object form can introduce
differences that may or may not correspond to
differences in behavior. Two object expressions of a
single program may differ as a result of how the source
form is translated to achieve differing computational
qualities or to conform to conventions and capabilities
of each specific environment. Conversely, two programs
may differ in their source form expressions and yet
translate into identical object form expressions for a
given computational environment.
Analogous to how source and object forms can impart
different views of how much two programs differ, the
functional expression of a program can differ from
corresponding behavioral expressions due to the effects
of different operational contexts (e.g., a multi-thread
source program translated onto a single processor
versus a multi-core multiprocessor versus a distributed
network of processors). Similarly, two programs that are
different implementations of the same functionality may
exhibit behaviors that are more, or less, similar
depending on how well they fit in a particular
computational environment. The functionality of a
single program may even exhibit different
computational results in different environments. For
example, one environment may implement some
capability in hardware which in another environment
must be emulated in software, resulting in behavioral

differences in what from a functional perspective is the
same program.
A proper determination of whether two programs differ
may need to take all of these perspectives into account.

3.4 THE CONCEPTS OF SIMILARITY AND
EQUIVALENCE

The premise of program families is that we are
interested in programs that are “similar”. Similarity is
informally the basis upon which humans intuitively
categorize objects. Lin offers a formal definition,
consistent with our intuition, of similarity as a
fundamental concept [7]. We take similarity in the
context of a program family as being a measure of the
degree to which two programs are interchangeable for a
specified purpose.
More precisely, we define similarity (~) to be a non-
negative real-valued binary function over the instances
of a specified set (the value of ~ is undefined for objects
not in the set). The value of ~ expresses the degree to
which two instances differ (larger values of ~ indicate
more differences). Equality (=) is the zero-valued special
case of similarity, denoting instances that are identical.
Equivalence (~~), being a generalization of equality, is a
related concept to similarity, for when two objects are
sufficiently similar for a given purpose that they are
effectively interchangeable (i.e., their differences are
inconsequential with respect to the intended purpose).
Equivalence is a binary relation over instances (s1, s2,
s3) of a set such that:
(1) s1 ~~ s1 [reflexive]
(2) if s1 ~~ s2, then s2 ~~ s1 [symmetric]
(3) if s1 ~~ s2 and s2 ~~ s3, then s1 ~~ s3 [transitive]

Similarity in Practice
As a general concept, similarity has increasing utility in
many specialized fields, such as information retrieval
(full-text searching to identify articles having similar
content), genomics (analyzing genetic material for 4

correspondences in sequence encoding or function, such
as similarity in genetic features of different types of
cancer), or pharmaceuticals (differentiating drugs that 5

treat the same condition but with differing costs,
benefits, effectiveness, and effects).6

 access the abstract for any article in <http://dmd.aspetjournals.org>, then click in the associated services 4

sidebar on “similar articles in this journal”

 “Implementation of a Functional Semantic Similarity Measure between Gene-Products” http://5

hdl.handle.net/10451/14233 and Study reveals genomic similarities between breast cancer and ovarian
cancers” <http://www.nih.gov/news/health/sep2012/nci-23.htm>

 “Incontinence Drugs: Benefits and Harms Compared” <http://www.webmd.com/urinary-incontinence-6

oab/news/20120409/incontinence-drugs-benefits-and-harms-compared>

�4

December 13, 2016

In software, similarity has been used as a basis for
detecting clones, malware, and duplicate code within
and across programs. This has typically taken the form
of analyzing and comparing the source or object
representations of existing programs for indications of
similarity in their content or structure [11]. Another
approach involved characterizing programs in terms of
measures of relevant qualities/aspects exhibited in a
program’s design and code, each program
corresponding to a point in a multi-dimensional
‘semantic’ metric space, in which distance between two
programs indicated the degree to which their properties
were similar [12].
Conversely, conventional software reuse involves
searching among already realized components for ones
that will provide needed functionality. An investigation
into how similarities in component interfaces can be
indicative of similarities in functionality has resulted in
a metric for identifying potential matches and a
refactoring method for reducing differences [10].
Another study explored analyzing benchmark program
code to discover similarities in relevant properties of
different programs as a means of reducing the number
needing to be used in evaluating the performance of a
microprocessor design [13].
As these examples suggest, the information and criteria
needed to determine whether objects are similar vary,
depending on the objects being considered and the use
to be made of such determination.
For programs, there has long been the perception that
similar problems accommodate similar solutions. Often
the degree of change required to modify a solution to fit
a new problem has been thought of informally as a
measure of similarity. The concept of a program family
takes this to its logical conclusion, that we can envision
a set of programs that constitute similar solutions to
similar problems. This usually arises from practical
experience with existing programs whose behaviors are
expected to be useful as a basis for future programs.

3.5 DEFINING A PROGRAM FAMILY AS A SET

The set of all programs is the universal set U [5]. A
subset Ux of U can be defined in two ways:

• Extension – enumeration of the members of U that
belong to Ux

• Intension – application of a characteristic predicate
that designates which members of U belong to Ux.

Any arbitrary set of programs can be designated as an
extensional subset of U. One such sort of subset comes
about through the common industry practice of
deriving new programs as variants of an existing
program. The resulting programs are, both by intent
and by construction, likely to be somewhat similar, alike
in some respects but differing significantly in others.
Regardless, these programs constitute a coherent
extensional subset of U, but its membership can change

over time as the need for other similar solutions arise or
as existing programs are modified or discarded.
In contrast, a program family fi is defined as an
intensional subset Ufi of U, corresponding to programs
that are similar in accordance with a characteristic
predicate associated with fi. Programs that satisfy the
intensional predicate criteria are included in Ufi; all
other instances of U are excluded. If the predicate
associated with fi is changed, the membership of Ufi
changes accordingly. We can also define a program
subfamily fij of any family fi by conjunctive extension of
the Ufi predicate with a predicate for Ufij, selecting only
those instances of Ufi that satisfy the criteria specified
for Ufij.

3.6 DISTINGUISHING AMONG INSTANCES OF A
PROGRAM FAMILY

By definition, all programs in Ufi are similar, in
accordance with the intensional predicate for fi.
However, within the context of a program family,
"similar" becomes a euphemism for different. Any two
instances of fi remain similar with respect to the
intensional predicate but will differ in other essential
and incidental ways.
In principle, any program that satisfies the intensional
predicate is an instance of and can be derived from fi by
reduction of Ufi to a subset that includes only the
needed program. Reduction of an intensionally-defined
set entails the conjunctive extension of the predicate
with additional terms. The basis for these terms are
deferred decisions that express differences in behavior
that customers in a target market need a program to
exhibit (and that establish why a single program will
not suffice). The motivations for having different
programs are sufficient as the determining factors that
allow us to distinguish among them. Conversely, two
programs will be considered equivalent, no matter how
different they are otherwise, if their targeted market
sees no purposeful difference in behavior between
them.
As noted by Dijkstra and Parnas, such decisions guide
engineers in determining how a particular program is to
be realized. A particular program can be realized only
after these deferred decisions have been resolved,
expressing the needs of a particular customer. Different
decisions lead to different programs being realized.
An advantage of using deferred decisions to
characterize differences among programs is that there is
no need to appeal to the physical realizations (source or
object expressions) of those programs. Instead, the
representational and behavioral expressions of each
program are determined, within the context of a family,
by how these decisions are resolved.

3.7 A DECISION MODEL FOR A PROGRAM FAMILY

Formalization of the set of decisions that discriminate
among the instances of a program family fi is referred to

�5

December 13, 2016

as the family’s decision model. There is a precise
canonical form for expressing a decision model.
A decision model Dfi for program family fi is a set of
decisions (d1, d2, ..., dn) that formalize how programs
in fi differ. A fully resolved decision model is one for
which all required decisions have been resolved. The
mapping from Dfi to Ufi is one to many: every
resolution of Dfi determines one or more instances of Ufi
and each instance of Ufi is designated by exactly one
resolution of Dfi.
It is presumed that the need for a program in fi is known
but which of those programs is not known. Decisions
can be thought of informally as questions that have
been deferred and must be answered in order to select
the instance of fi that best fits the perceived need.
There is a default scheme for characterizing individual
decisions. Each decision is named and can be either
required or optional. Each decision is one of three types:

• discrete: a simple choice, optionally having an
associated value in a designated target notation
(e.g., the notation in which a program's source is
expressed)

• composite: a set of M constituent decisions, each
constituent being optional or required

• repeating: an ordered, indeterminate number of
uniformly defined constituent decisions

Any (partial or complete) resolution of the decision
model Dfi for fi corresponds to a subset of Ufi. Each such
subset comprises a set of equivalent instances of fi
relative to resolved decisions. The set of all possible
complete resolutions of Dfi defines a partitioning of Ufi
such that each instance of fi is a member of exactly one
subfamily whose instances constitute an equivalence set
within Ufi.
Instances of a subfamily, defined by a partial resolution
of Dfi, can later be distinguished from each other
through the resolution of remaining unresolved
decisions. In this way, by progressively resolving
elements of Dfi, continuing to defer decisions in areas of
uncertainty, the set of programs can be narrowed to
those that are a better fit to a particular customer's
needs; potentially, multiple alternative solutions can be
derived to empirically evaluate and resolve
uncertainties concerning the best fit to actual needs.
Similarly, instances of a fully resolved equivalence
subset can be distinguished only by extending Dfi.
Although the programs in such a subset are
characterized by the same resolution of Dfi, they would
nevertheless differ in some unspecified, presumably
incidental, aspects. If meaningful differences in these
programs are discovered, the ambiguity can be resolved
simply by adding decisions to Dfi (possibly only with
respect to the programs in that subset), so as to further
partition this subset to account for those differences.

4. FORMULATING A METRIC SPACE

A metric space defines a topology over an abstract space
containing the members of a set S of objects [6]. The
properties of a metric space define a relationship among
members s1, s2, and s3 of S in terms of an associated
non-negative "distance" metric d (S, S):
(1) d (s1, s2) = 0 if and only if s1 = s2 [identity]
(2) d (s1, s2) + d (s2, s3) >= d (s1, s3) [triangularity]
(3) d (s1, s2) = d (s2, s1) [symmetry]
These properties define the criteria for any measure of
distance between members of S within the containing
space.

4.1 OBJECT IDENTITY IN A METRIC SPACE

To satisfy the identity property for a metric space, a
metric must exist that can determine the equality of
contained objects.
There are in general two ways of framing object identity.
The more common is to view objects as mutable, having
identities that are extrinsically fixed and independent of
any changes in an object’s properties or composition.
For example, a river retains its identity even as its
constituent water changes or its course varies over time.
The same holds for people: changing any particular
attribute such as hair color, an organ, or finger prints
does not constitute a change in identity.
Conventionally, this view of identity has prevailed for
software as well: modifying a program is not viewed as
creating a different program but merely as changing
only selected aspects of that program. Analogously, a
“new” program can be created as an identical copy of an
existing program and then exist with a separate identity
independent of the copied program.
This conception of programs as mutable presents a
dilemma for an intensionally-defined set. With mutable
programs, set membership would be unstable: changes
to a program’s properties could cause it to move into or
out of set membership or equivalence to other members
of the set. Furthermore, changing a program could have
the indirect effect of making two different programs
identical, violating the identity property for a metric
space. We would not know whether two programs were
actually equal except by knowing how they came to
exist, whether as the same object with differing
properties or as different objects even if their properties
are identical.
With objective framing, identity is determined based
strictly on the (immutable) properties of each program
considered. The properties of a program cannot
“change” – different values connote a different program.
With this framing of identity, we can distinguish two
programs simply by comparing their properties.
Conventional software practices are clearly sufficient to
build a needed program with some degree of certainty.

�6

December 13, 2016

The reason for this is that developers do not actually
know which program they are building until it is
complete: they know neither the exact form of its
representation nor its exact behavioral properties.
Instead they iteratively refine the representational
expression of the needed program until it sufficiently
approximates specified behavioral properties. The way
to think of this if programs are viewed as immutable is
that developers iteratively search the space of potential
programs to find one that adequately satisfies their
needs.
The intent with a program family is to in fact approach
derivation of programs as being a search through a
space of similar immutable programs. This search is
guided by what from a customer perspective are the
properties of a needed program for a best (possibly
approximate) fit within that space. Selecting a program
becomes a process of progressively reducing the space,
through the tightening of similarity criteria, until a
single program is identified.

4.2 PSEUDO-METRIC SPACES

The identity property for a metric space is strict: the
distance between two objects cannot be zero unless the
objects are identical. For some purposes, this is overly
strict. It can be useful to associate objects that are not
identical but that are similar enough to be considered
interchangeable. Substituting the equivalence relation in
place of equality for a more flexible definition of
identity determines a relaxed form of metric space
known as a “pseudo” metric space:
(1) d (s1, s2) = 0 if and only if s1 ~~ s2 [identity]
In a pseudo-metric space, the distance between any two
members of S will be zero if they are either identical or
equivalent; the distance metric for a space must
encapsulate the criteria for what constitutes equivalent
objects in that space.
Given a pseudo-metric space for a set Ux, an equivalent
metric space can be derived by defining a subset Ux′ of
Ux in which collections of equivalent members of Ux
are replaced by single archetypal instances. This entails
partitioning the members of Ux into a collection of
subsets Uxi (i = 1..n) such that each Uxi contains only
equivalent members. By this, each member of Ux is
mapped into exactly one Uxi. For each Uxi, one member
would be chosen as its archetype and added to the Ux′
subset of Ux. The resulting set Ux′ will have exactly the
same number of members as Ux has equivalence
subsets. The pseudo-metric d can then be reframed as a
metric for Ux′, which containing no equivalent
instances, will satisfy the stricter identity property
required for a metric space.

5. A DISTANCE METRIC FOR A PROGRAM
FAMILY

To define a metric space for a set of programs
comprising a program family, we will interpret
difference as being a measure of distance: the distance
between two programs is a measure of how different
they are. The distance between a program and itself is
zero (also between any two equivalent programs in a
pseudo-metric space). The distance between any other
pair of programs will be greater than zero. We will show
how differences between instances of a program family
can be expressed and used to compute a distance metric
for a pseudo-metric space. We can then apply the simple
pseudo-metric-to-metric transformation to create a
condensed but equivalent program family that, using
the same distance metric, will constitute a proper metric
space.
With a program family, we have a set of programs that
we have established as being similar due to the
intensional predicate for the set; programs that are not
in that set are of no further interest. From a decision
model for distinguishing instances of a family fi, we
have criteria that can be used to describe how any two
programs in Ufi differ.
A decision model only indirectly expresses how
programs differ; what it expresses directly are the
considerations that cause customers to need different
programs. This is a sufficient basis for describing
program differences because all more intrinsic
differences must be traceable to the differences that
matter to customers. We have no reason to distinguish
between programs whose differences are not of interest
to the customers in a targeted market. A key feature of
this approach is that programs can be characterized and
related to each other within the metric space without the
programs having been built.
To define a pseudo-metric space for the family, we only
need a means to compute a distance pseudo-metric for
the set based on the decision model. By distinguishing
between programs by the differences in how the
decision model is resolved for each program and
defining a computation that quantifies this difference,
we create a metric that can be interpreted as the distance
between any two instances of a program family.

5.1 A SIMPLE METRIC

From a decision model associated with fi, there is a
simple way and a complex way to define a metric that
will satisfy pseudo-metric criteria. The decision model
defines the choices that a developer needs to have
resolved in order to know which member of a program
family corresponds to what a customer needs. Every
program in Ufi is characterized by a specific resolution
of the decision model. Any complete resolution of the
decision model will designate a subset of Ufi that
satisfies the indicated criteria.

�7

December 13, 2016

The simple alternative is to define what is known as a
discrete metric for the family: for each pair of programs
p1 and p2 that are members of the family, d (p1, p2) = 0
if and only if p1 and p2 are equivalent programs (i.e.,
characterized by identical resolutions of the decision
model), otherwise 1.
The limitation of the discrete metric is that it is overly
simple, treating all differences as being equally
weighted. However, it does define a partitioning of Ufi
into equivalence subsets. Programs in an equivalence
subset are interchangeable with respect to decision
model criteria for fi, that is, they do not differ in any
way that matters to customers. If a customer’s needs are
met by the instances of a particular equivalence subset,
any instance of that subset can be chosen arbitrarily as
all provide equivalent behavior, in the view of
customers in the targeted market.

5.2 A COMPLEX METRIC

A more useful metric can be defined as the computation
of an actual difference value between any two instances
p1 and p2 of a program family. Because each instance of
a family is characterized by a resolution of the family's
decision model, an analysis of the differences in the
decision model resolutions for p1 and p2 is a sufficient
basis for such a metric. This has the advantage over the
simple metric of giving a more accurate approximation
of how much difference there is, from a customer
perspective, between p1 and p2. In addition, it may be
feasible to identify programs that are a better fit to some
need by first finding an inferior fit and then examining
“near by” programs that differ favorably with respect to
that need.
For a complex metric, the distance between two
programs is computed in terms of the difference
between their associated decision model resolutions.
The relative importance of a decision is determined by
its level in the hierarchy of decisions represented by the
decision model. A first approximation to computing the
value of a more precise distance metric has four
elements:
(1) For any optional decision di, d (p1, p2) = 0 if both di

(p1) and di (p2) are omitted, or 1 if one is omitted
but not the other, otherwise evaluate according to
decision type

(2) For each discrete decision di, d (p1, p2) = 0 if di (p1)
= di (p2), otherwise 1

(3) For each composite decision di, d (p1, p2) = the sum
of constituent decision metric values divided by the
total number of constituent decisions M

(4) For each repeating decision di, d (p1, p2) = the
pairwise sum of constituent decision metric values
divided by the greater of the number of component
decision values comprising p1 and p2

Each of these computations will result in a rational (real)
value between 0 (identical decisions) and 1 (no

decisions in common at all). For the purpose of
computing the aggregate distance metric for programs
p1 and p2, the decision model itself is treated as a
composite decision.

5.3 FURTHER METRIC REFINEMENTS

The complex method as described yields a metric that
may suffice but is still not an entirely comprehensive or
precise measure of the differences between two
programs. Rather it provides an approximation of how
much two programs differ in the aspects (only and most
importantly) that matter most from a customer
perspective.
Three minor refinements, and perhaps others, could
make this metric more precise:

• Treat any required decision that is unresolved as if
it were optional in computing an interim metric;
this will result in a value that is the lower bound on
the difference between two programs.

• For a target-valued discrete decision, compute the
metric to be proportional to the degree of
difference in the decision's values (i.e., using a
string metric to compute a value between 0, a
perfect match, and 1, no match at all).

• For a repeating decision, discount component
ordering by computing the metric as an average of
the metric values obtained under all reorderings of
the decision value having more elements.

5.4 A STRATEGY FOR DEFINING A PROGRAM
FAMILY METRIC SPACE

The set of programs Ufi comprising program family fi
and the simple distance metric applied to the decision
model associated with fi defines a pseudo-metric space.
The simple metric effectively partitions Ufi into
equivalence subsets. Each of these subsets is collapsed
into a singleton by the arbitrary selection of any one of
its equivalent instances.
The programs from these singleton subsets constitute a
subset Ufi′ of Ufi, such that Ufi′ consists entirely of
programs that are one-to-one uniquely selected by
resolutions of Dfi. Each possible resolution of Dfi will
select exactly one and only one instance of Ufi′,
satisfying the strict identity property for a metric.
Associating the complex metric with the reduced set
Ufi′, which is behaviorally equivalent to Ufi, defines a
metric space that quantifies the substantive differences
among instances of fi′.
This formulation of a program family as the set of
programs Ufi′ and the complex metric, with all instances
of the family characterized in terms of a single decision
model, satisfies the identity, triangularity, and symmetry
properties for a metric space. Per the identity property
of a metric space, and due to the reduction of all
equivalent subsets to singleton sets, each full resolution
of the decision model selects exactly one program.

�8

December 13, 2016

5.5 PRACTICAL RELEVANCE OF A PROGRAM FAMILY
METRIC SPACE

The intrinsic value of formulating a program family as a
metric space is that it gives an objective mathematical
interpretation to the concept of similarity among
programs. It provides a basis for viewing programs as
abstract conceptions that have many physical
realizations, differing in both essential and incidental
aspects. It provides a medium for exploring how and
why programs differ, based on why different programs
are needed rather than on the superficial basis of their
physical representation or the more complex basis of
how to accurately formalize the many facets of behavior.
The practical value of the metric comes in using it as a
measure of the distance between a “theory” of the
needed program and individual instances of the
program family that can be built (i.e., how well each
program satisfies a particular set of needs). Using the
decision model, we describe an envisioned program
that will satisfy a customer’s needs. We then (in
principle) determine the distance between that
envisioned program and each of the instances of the
program family in order to find an instance that best
matches those needs. Ideally we will find a program
that has a distance metric of zero to the envisioned
program.
An incomplete resolution of the decision model,
corresponding to an incomplete program theory and
suggesting uncertainty about needs, inherently implies
multiple alternative programs (just as the whole
decision model implies the entire set of constructible
programs comprising the family). Choosing among
multiple programs presumes being able to specify and
compare multiple resolutions of the decision model,
possibly going so far as building models of alternative
programs for analysis or even full realizations for
comparative empirical evaluations. The distance from
the incomplete program theory to each of these
programs can be determined inversely by describing the
decisions that would result in each program. Another
alternative is to generalize the program theory by
deferring resolution of some decisions beyond program
derivation, emulating a subset of the program family as
a hybrid program that requires resolution of deferred
decisions during program operation.

6. PRODUCT FAMILIES AS A GENERALIZATION
OF PROGRAM FAMILIES

The generalization from programs to products is
straightforward. A product family is simply a set of
similar products, each of which conveys one instance of
a corresponding program family. Beyond being the
conveyance of a program, a product includes all of the
elements and artifacts entailed in creating and
instituting the means for operation of a business process
within an enterprise.

In simple terms, a product is everything (e.g.,
specifications, a program realized as software and/or
hardware components, quality criteria, materials for
installation/validation/training/use) needed for the
provision of a capability to an enterprise: a product is a
means for instituting changes in how an enterprise
operates.
Each product, by convention, extends and frames a
particular program, but the same program may be
conveyed by multiple products. With a product family
being the extension of a conveyed program family, the
decision model associated with the program family is
also a sufficient starting point for distinguishing among
the instances of the product family. Resolution of this
decision model determines a specific program and, at
least partially, determines its conveying product (or
more precisely, a set of potential conveying products).
Analogous to the program family it conveys, a product
family fi is conceived as an intensionally-defined subset
Ufi of the set U of all such products. Existing products
that belong to this set, having each been physically
realized and deployed into use, constitute an
extensionally-defined subset of Ufi. (Synthesis defined a
product line as being this subset.) The membership of
this subset evolves as new instances of the product
family are built.
If there is only a single instance product for conveying
each program, the product family constitutes a metric
space based on the same decision model-derived metric
as the subsumed program family. If any programs are
conveyed by multiple products, we can view the set of
products associated with each such program as an
equivalence subset of the product family. In this case,
the product family reverts to being a pseudo-metric
space.
By deferring considerations that are discriminators
among products but not of the programs that they
convey, we can still rely on the program family metric
for determining the best fitting program and then
choose among the set of conveying products based on
how they differ. Product differences are typically
independent of conveyed program differences and
concern conventions of product packaging or business
process transition as instituted by the targeted
enterprise. A product-options extension to the program
family decision model is easily defined to account for
these product discriminators, resulting in a metric space
for the family of complete products.

On First Conceiving a Product Family
Synthesis was conceived based on an understanding of
how to express a product family in aggregate as the
basis for a product generator and a streamlined product
manufacturing (i.e., application engineering) process.
However, lacking an effective criteria for limiting the
scope of a product family, there was not a disciplined
way to limit the effort required to do this. The answer

�9

December 13, 2016

lay in two determinations that any effective
manufacturing enterprise must make:

• (domain) What type of products do we have the
competence (knowledge, experience, and
expertise) to build?

• (coherent market) What capabilities would
customers, having similar needs for such
products, need now and in the future?

These suggest a potential convergence between a
supplier’s capabilities and their customers’ needs. A
coherent market represents what customers need, a
domain represents similar products that a supplier has
the ability to build. A domain that aligns to a market
constitutes a business opportunity. An effective domain-
market pair will be mutually defining, co-dependent,
and co-evolving.
Domain knowledge is expressed in the aggregate
representation of the product family; domain expertise
is expressed in the process for the manufacture
(specification, evaluation, and generation) and
deployment of instances of the product family; and
domain experience resides in the people who comprise
the organization.
As a practical matter, in the realization of a product
family, formalization of the intensional predicate that
characterizes included products would be extremely
complex and entail significant effort (consider that this
predicate would have to characterize how the
envisioned products differ from all other conceivable
products). Instead, in practice, it suffices to express this
predicate informally in a set of assumptions of
“commonality” that define what distinguishes included
products from those excluded. (In fact, these
assumptions might reasonably be formalized as terms in
a corresponding, though possibly incomplete, predicate,
but the benefit of doing so is not evident.) These
assumptions suffice as the basis for creating a concrete,
aggregate realization of the corresponding product
family. Customized products can then be “selected” (i.e.,
derived) from this representation based on resolution of
the associated decision model.
In reality, the aggregate realization of a product family
serves as a de facto formalization of the intensional
predicate, establishing exactly what products are
included: any product that can be derived from the
family is included and all others are excluded. In
practice, however, a domain is typically conceived as
including products that are not initially derivable. One
option in this case is to derive an approximation of a
needed product by modifying the corresponding
resolution of the decision model so that it describes a
product that can be derived but is a “close”, rather than
exact, fit to customer needs. In any case, a domain will
inevitably evolve over time both to accommodate
initially unsupported products and, along with its
corresponding intensional predicate, to account for
changing market needs.

7. SUMMARY

This paper has offered a mathematical formulation for
understanding the concept of a product family. Based
on set and metric space theories, this formulation
establishes similarity as a mathematical relationship
over a set of products that are perceived intuitively as
being similar. This may allow us to better formalize the
process and mechanisms by which customized products
as a best fit to a customer’s needs can be efficiently
manufactured and revised as those needs change.

REFERENCES

1. E. Dijkstra, "Notes on Structured Programming: On
Program Families", Structured Programming.
London: Academic Press, 1972, 39-41.

2. D. Parnas, “On the Design and Development of
Program Families”, IEEE Trans on Software Eng.
SE-2, 1976, 1-9.

3. G. Campbell, S. Faulk, and D. Weiss, Introduction to
Synthesis. Herndon, Va: Software Productivity
Consortium, 1990. <www.domain-
specific.com/PDFfiles/IntroSyn.pdf>

4. G. Campbell, “Domain-specific Engineering”,
Proceedings Embedded Systems Conference, 1997.
<www.domain-specific.com/PDFfiles/DsE-
RSP.pdf>

5. S. Hu, Introduction to Contemporary Mathematics,
Holden-Day, Inc., 1966.

6. J. Kelley, General Topology, D. Van Nostrand
Company, Inc., 1955.

7. D. Lin, “An Information-Theoretic Definition of
Similarity”, Proceedings of the Fifteenth International
Conference on Machine Learning, 1998, 296-304.

8. A. Walenstein, et.al., “Similarity in Programs”
Duplication, Redundancy, and Similarity in Software
(Dagstuhl Seminar Proceedings 06301), 2006.

9. D. Batory, “The Challenges and Science of
Variability”, Duplication, Redundancy, and Similarity
in Software (Dagstuhl Seminar Proceedings 06301),
2006.

10. B. Kratz, R. Reussner, and W. van den Heuvel,
“Empirical Research On Similarity Metrics For
Software Component Interfaces”, Transactions of the
Society for Design and Process Science 8 (4), 2004, 1-17.

11. S. Cesare and Y. Jiang, Software Similarity and
Classification, Springer, 2012.

12. E. Kapetanios and S. Black, On the Notion of Semantic
Metric Spaces for Object and Aspect Oriented Software
Design. University of Westminster, London, UK,
2008.

13. A. Phansalkar, A. Joshi, L. Eeckhout, and L. John,
“Measuring Program Similarity”, IEEE International
Symposium on Performance Analysis of Systems and
Software, 2005, 10-20.  

�10

http://www.domain-specific.com/PDFfiles/IntroSyn.pdf
http://www.domain-specific.com/PDFfiles/IntroSyn.pdf
http://www.domain-specific.com/PDFfiles/DsE-RSP.pdf
http://www.domain-specific.com/PDFfiles/DsE-RSP.pdf
http://www.domain-specific.com/PDFfiles/DsE-RSP.pdf

