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ABSTRACT

A product family is an envisioned set of similar 
products. Products are similar if they provide similar 
solutions to the same or similar problems. The products 
comprising a product family can be explicitly specified 
and differentiated by a mathematical formulation based 
on set and metric space theories. Such a formulation 
provides a framework for the systematic engineering of 
a product family and an associated mechanism for 
deriving any encompassed product, enabling the 
streamlined manufacture of customized products.
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1. INTRODUCTION

A product family is an envisioned set of similar products, 
alternative solutions to one problem or similar solutions 
to a set of similar problems . This concept provides a 1

framework for building and evolving a set of high 
quality, customized products with effort comparable to 
building and maintaining a single product 
conventionally.
As a realization of the manufacturing concept of mass 
customization, the product family concept derives its 
power from focusing developers on problems that are 
intuitively similar but that are nevertheless 
characterized by diversity, uncertainty, and change. 
Each product must be customized to achieve a proper fit 
to a particular customer’s specific needs.
The concept of a product family has long been 
understood, in practical terms, as the representation in 
aggregate of a set of similar products, with an associated 
mechanism for deriving instance products from that 
representation. After more than 25 years experience 
with product families, this paper defines a mathematical 
formulation of the product family concept.
The essence of a product is its behavior, the capabilities 
realized through its use. This behavior is expressed in 
the guise of a “program”. To define the product family 
concept, we first present a framework for characterizing 
programs as abstract objects and a set of similar 
programs as a family. We then integrate these views to 
enable representing a program family in the form of a 
metric space in terms of differences (i.e., variability) 
among instance programs. Finally, we generalize this 
formulation of programs and program families to 
characterize products and product families as the basis 
for the derivation of customized products.
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 A "product" is some realization of a solution to a problem, corresponding to a point in a universal problem-solution 1

space. “Problem” is used, in a general sense, to mean a set of needs that will be met by a product that conveys a 
“solution” to those needs.
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2. BACKGROUND

In 1972, Dijkstra informally defined the concept of a 
(computer software) program family as a set of “related 
programs either as alternative programs for the same 
task or as similar programs for similar tasks” [1]. He 
argued that the proper solution to a problem should be 
justified based on an understanding of possible 
alternative solutions. Furthermore, as Parnas also 
argued [2], when an imperfect understanding of the 
problem or a changed or new but similar problem 
requires a different solution, that solution should not be 
viewed as merely a change in the program's source text 
but as a rederivation that retains common aspects of the 
prior solution.
In 1990, this viewpoint became a core premise of the 
Synthesis methodology (later refined and extended as 
the Domain-specific Engineering (DsE) methodology) 
for the development and use of product families [3, 4]. 
The motivation for Synthesis was to define a practical 
approach for building multiple similar products for 
customers having differing needs, but without the effort 
required conventionally to build, tailor, and maintain 
each product individually. The approach was also 
motivated by the view that engineering is a discipline of 
identifying and resolving uncertainties and tradeoffs to 
find a suitable fit to needs among feasible alternatives in 
a problem-solution space.
Synthesis defined the concept of a product family as a 
generalization of the program family concept: although 
actual development of a product is concerned primarily 
with creating an operational software program that 
provides some capability to an enterprise, it entails 
creating more than just the program – it also requires 
the production of specifications, documentation, test 
materials, and installation and training materials. All of 
these materials in combination, and mutually consistent 
with the software program as developed, constitutes a 
product that is then able to be delivered to a customer 
and used. Similarly, as a customer’s needs change, not 
only the software program but the product as a whole 
must be revised/replaced with a product that better 
suits then-current needs.
Subsequent “product line”  efforts by the Software 2

Engineering Institute and various European initiatives, 
as reported in numerous conferences and workshops, 
have shown that the product family concept is the basis 
for a viable approach to the development of software-

based products. This paper augments those experiences 
by providing a definition of the mathematical properties 
of a product family.

3. A SET THEORETICAL FRAMEWORK FOR 
PROGRAM FAMILIES

A program family is “a set of similar programs". To 
understand what this means, we have to understand the 
concept of a ‘program’, what is meant by 'similar', and 
how such a set is conceived.

3.1 ON THE CHARACTERIZATION OF A PROGRAM

A program is an expression of behavior that a computer 
is able to enact . Such expression must be well-formed 3

but can be in any notation that can be translated into a 
form that a computer has been built to recognize. An 
expression is well-formed if it conforms to the rules of 
the conveying notation (being well-formed implies that 
the expression is, or can be correctly translated into, an 
expression that a computer can enact; it does not imply 
that the expression will result in expected (“correct”) 
behavior when enacted by a computer).
Walenstein identifies two categories of program 
characterization [8]: representational (syntactic) and 
behavioral (semantic). These categories provide a 
framework not only for describing the different aspects 
of a program but also for characterizing how two 
programs differ.
Representational characterizations, corresponding to the 
physical realization of a program, can be further 
divided into:

• Source – the expression (syntax, structure, and 
layout) of a program in a human-readable 
notation

• Object – the expression (semantics and physical 
realization in a computational environment) of a 
program in a computer-enactable notation (a 
machine-independent intermediate notation or a 
machine-dependent binary encoding)

Although a program is most simply understood in 
terms of its expression in a given source notation, its 
utility comes through its expression in object form that 
is then realized as the observable behavior of a 
computer. The object form of a program is translated 
from and therefore derivative of its source form, 
according to the conventions of a targeted 
computational environment (i.e., processor, devices, and 

 Many people have conflated “product line” with “product family”; this paper retains the original distinction made 2

in Synthesis between the two, that a product line comprises only products that have been built and deployed into use 
to solve similar problems. Although a product line may be a subset of a product family, it may include dissimilar 
products if they solve similar problems. (This is formally clarified in section 6 below.)

 Although in this context a program is conceived of as instructions to be executed by a computer, we can more 3

generally think of a program as an abstract definition of behavior that a given natural or constructed mechanism is 
capable of exhibiting.
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operating software). A program may have multiple 
object form expressions of its source notation if it is 
intended to operate in differing environments.
Behavioral characterizations, designating the observable 
properties associated with a program, can be divided 
into:

• Functional – an expression of a program’s 
intended purpose, meaning, properties, and 
constraints (e.g., the algorithm, business practices, 
and ancillary conventions that it implements)

• Computational – an expression of a program's 
observable behavior in a particular operational 
context of usage

The essential distinction between these two types of 
behavioral characterization is that functional assumes 
an idealized approximation of the operational 
environment whereas computational presumes a fully 
realized environment having empirically predictable 
effects on a program’s behavior.
These bipartite divisions (of representational and 
behavioral characterizations) are correlated. A 
program’s functional properties are a realization of its 
source expression: both express intrinsic aspects of a 
program independent of computational context. 
Likewise, a program’s computational properties are a 
realization of its object expression: both are extrinsically 
influenced by properties of a targeted computational 
environment. The essential challenge of software 
engineering is achieving a consistent realization of all 
four of these forms of expression.

3.2 PROGRAMS, ENVISIONED AND REALIZED

Although we tend to think of a program as 
corresponding to a source expression that engenders 
some intended behavior, when we set out to create a 
program, we do not know its source form. We imagine a 
program that has the anticipated behavior and then 
must derive a source expression that, after translation 
into a suitable object expression, will cause a computer 
to enact that behavior. Even if we have the source 
expression of an existing program having similar 
behavior, we typically will know only approximately 
how its source differs from what is needed to produce 
the intended behavior.
If a program’s source and object forms are known, these 
can be analyzed to produce behavioral 
characterizations. A program whose source form is not 
known can still be characterized in terms of its 
envisioned behavior, but then corresponding source and 
object expressions that will actually produce (an 
acceptable approximation of) that behavior must be 
discovered.
A program family, whose motivation is the ability to 
derive programs with intended behaviors, leverages 
both of these perspectives. In this, we are interested in 
how differences in source expression correspond to 

differences in functionality and how, via object 
expressions, these effect differences in computational 
behavior. Moreover, our interest is in how, starting with 
an envisioned behavior, we can systematically derive a 
program that verifiably produces that behavior.
In conventional practice, a needed program is 
envisioned and derived by creating an incomplete or 
otherwise flawed variant that is then iteratively 
modified, creating other variants that differ in order to 
enhance or correct particular aspects of its predecessors’ 
behaviors, until an acceptable variant is achieved.
Similarly, when an existing program misbehaves or no 
longer meets changed needs, its replacement is 
envisioned as being just the old program but with some 
parts of its source expression changed.
Conversely, we can think of such efforts not as 
“changing” an existing program but rather as replacing 
it with a different, more suitable one, without 
consideration of specifically how the source forms of the 
two differ. It is as if we had independently realized two 
programs that exhibit similar behavior and we are 
selecting the one that is the best fit to perceived needs.

3.3 DISTINGUISHING AMONG PROGRAMS

Two programs may be deemed to be more or less alike 
depending on which form of expression is used as the 
basis for comparison. At first, it may seem sufficient to 
presume that differences between two programs are 
exactly the differences between their source expressions. 
After all, in a constructive sense, the other forms can be 
thought of as deriving from the source form. However, a 
particular source expression may result in differing 
object expressions when translated for different 
computational environments. Similarly, programs 
having different source expressions (in the same or 
different notations) may correspond to identical 
functional or object expressions. Even more 
significantly, we can express behavioral 
characterizations of envisioned programs and explore 
differences between them entirely in terms of their 
differing behaviors and tradeoffs, without having 
existing representational expressions of those programs.
Still, comparing source expressions of programs 
provides a good foundation for understanding how 
programs can differ. A common prescriptive expression 
of the source differences between two programs is the 
series of changes required to transform one program’s 
source into the other’s. In this, a distinction between 
essential and incidental differences warrants 
consideration. An incidental difference results when the 
same meaning can be expressed in different forms. For 
example, in most notations, different spacing would be 
an incidental difference between two source 
expressions. Similarly, different developers may 
differently name and represent the same data. More 
significantly, notations often provide alternative ways of 
expressing the same functionality; these alternate 
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expressions will differ in appearance but may (or may 
not) produce the same behavior depending on how each 
form is translated into object form. Consequently, a 
capability implemented independently in the same 
source notation by two different developers might not 
be recognized as similar because of incidental 
differences in expression even if they happen to produce 
identical behavior. Conversely, a difference would be 
considered essential if it results in different behaviors.
Comparing object expressions as an indicator of 
program difference, whether for different object 
expressions of the same source or for object expressions 
of different source expressions, is more complex. A 
program’s object expression(s), being derivative of its 
source form, is a less reliable conveyor of essential 
difference because of the different forms that a 
translation can introduce. However as Batory has noted, 
correlating behavioral differences between two 
programs to source differences can provide a basis for 
understanding how changes in a program’s source 
representation will affect its behavior [9]. Different 
translations from source to object form can introduce 
differences that may or may not correspond to 
differences in behavior. Two object expressions of a 
single program may differ as a result of how the source 
form is translated to achieve differing computational 
qualities or to conform to conventions and capabilities 
of each specific environment. Conversely, two programs 
may differ in their source form expressions and yet 
translate into identical object form expressions for a 
given computational environment.
Analogous to how source and object forms can impart 
different views of how much two programs differ, the 
functional expression of a program can differ from 
corresponding behavioral expressions due to the effects 
of different operational contexts (e.g., a multi-thread 
source program translated onto a single processor 
versus a multi-core multiprocessor versus a distributed 
network of processors). Similarly, two programs that are 
different implementations of the same functionality may 
exhibit behaviors that are more, or less, similar 
depending on how well they fit in a particular 
computational environment. The functionality of a 
single program may even exhibit different 
computational results in different environments. For 
example, one environment may implement some 
capability in hardware which in another environment 
must be emulated in software, resulting in behavioral 

differences in what from a functional perspective is the 
same program.
A proper determination of whether two programs differ 
may need to take all of these perspectives into account.

3.4 THE CONCEPTS OF SIMILARITY AND 
EQUIVALENCE

The premise of program families is that we are 
interested in programs that are “similar”. Similarity is 
informally the basis upon which humans intuitively 
categorize objects. Lin offers a formal definition, 
consistent with our intuition, of similarity as a 
fundamental concept [7]. We take similarity in the 
context of a program family as being a measure of the 
degree to which two programs are interchangeable for a 
specified purpose.
More precisely, we define similarity (~) to be a non-
negative real-valued binary function over the instances 
of a specified set (the value of ~ is undefined for objects 
not in the set). The value of ~ expresses the degree to 
which two instances differ (larger values of ~ indicate 
more differences). Equality (=) is the zero-valued special 
case of similarity, denoting instances that are identical.
Equivalence (~~), being a generalization of equality, is a 
related concept to similarity, for when two objects are 
sufficiently similar for a given purpose that they are 
effectively interchangeable (i.e., their differences are 
inconsequential with respect to the intended purpose).
Equivalence is a binary relation over instances (s1, s2, 
s3) of a set such that:
(1) s1 ~~ s1  [reflexive]
(2) if s1 ~~ s2, then s2 ~~ s1  [symmetric]
(3) if s1 ~~ s2 and s2 ~~ s3, then s1 ~~ s3  [transitive]

Similarity in Practice
As a general concept, similarity has increasing utility in 
many specialized fields, such as information retrieval 
(full-text searching to identify articles having similar 
content ), genomics (analyzing genetic material for 4

correspondences in sequence encoding or function, such 
as similarity in genetic features of different types of 
cancer ), or pharmaceuticals (differentiating drugs that 5

treat the same condition but with differing costs, 
benefits, effectiveness, and effects ).6

 access the abstract for any article in <http://dmd.aspetjournals.org>, then click in the associated services 4

sidebar on “similar articles in this journal”

 “Implementation of a Functional Semantic Similarity Measure between Gene-Products” http://5

hdl.handle.net/10451/14233 and Study reveals genomic similarities between breast cancer and ovarian 
cancers” <http://www.nih.gov/news/health/sep2012/nci-23.htm>

 “Incontinence Drugs: Benefits and Harms Compared” <http://www.webmd.com/urinary-incontinence-6

oab/news/20120409/incontinence-drugs-benefits-and-harms-compared>
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In software, similarity has been used as a basis for 
detecting clones, malware, and duplicate code within 
and across programs. This has typically taken the form 
of analyzing and comparing the source or object 
representations of existing programs for indications of 
similarity in their content or structure [11]. Another 
approach involved characterizing programs in terms of 
measures of relevant qualities/aspects exhibited in a 
program’s design and code, each program 
corresponding to a point in a multi-dimensional 
‘semantic’ metric space, in which distance between two 
programs indicated the degree to which their properties 
were similar [12].
Conversely, conventional software reuse involves 
searching among already realized components for ones 
that will provide needed functionality. An investigation 
into how similarities in component interfaces can be 
indicative of similarities in functionality has resulted in 
a metric for identifying potential matches and a 
refactoring method for reducing differences [10]. 
Another study explored analyzing benchmark program 
code to discover similarities in relevant properties of 
different programs as a means of reducing the number 
needing to be used in evaluating the performance of a 
microprocessor design [13].
As these examples suggest, the information and criteria 
needed to determine whether objects are similar vary, 
depending on the objects being considered and the use 
to be made of such determination.
For programs, there has long been the perception that 
similar problems accommodate similar solutions. Often 
the degree of change required to modify a solution to fit 
a new problem has been thought of informally as a 
measure of similarity. The concept of a program family 
takes this to its logical conclusion, that we can envision 
a set of programs that constitute similar solutions to 
similar problems. This usually arises from practical 
experience with existing programs whose behaviors are 
expected to be useful as a basis for future programs.

3.5 DEFINING A PROGRAM FAMILY AS A SET

The set of all programs is the universal set U [5]. A 
subset Ux of U can be defined in two ways:

• Extension – enumeration of the members of U that 
belong to Ux

• Intension – application of a characteristic predicate 
that designates which members of U belong to Ux.

Any arbitrary set of programs can be designated as an 
extensional subset of U. One such sort of subset comes 
about through the common industry practice of 
deriving new programs as variants of an existing 
program. The resulting programs are, both by intent 
and by construction, likely to be somewhat similar, alike 
in some respects but differing significantly in others. 
Regardless, these programs constitute a coherent 
extensional subset of U, but its membership can change 

over time as the need for other similar solutions arise or 
as existing programs are modified or discarded.
In contrast, a program family fi is defined as an 
intensional subset Ufi of U, corresponding to programs 
that are similar in accordance with a characteristic 
predicate associated with fi. Programs that satisfy the 
intensional predicate criteria are included in Ufi; all 
other instances of U are excluded. If the predicate 
associated with fi is changed, the membership of Ufi 
changes accordingly. We can also define a program 
subfamily fij of any family fi by conjunctive extension of 
the Ufi predicate with a predicate for Ufij, selecting only 
those instances of Ufi that satisfy the criteria specified 
for Ufij.

3.6 DISTINGUISHING AMONG INSTANCES OF A 
PROGRAM FAMILY

By definition, all programs in Ufi are similar, in 
accordance with the intensional predicate for fi. 
However, within the context of a program family, 
"similar" becomes a euphemism for different. Any two 
instances of fi remain similar with respect to the 
intensional predicate but will differ in other essential 
and incidental ways.
In principle, any program that satisfies the intensional 
predicate is an instance of and can be derived from fi by 
reduction of Ufi to a subset that includes only the 
needed program. Reduction of an intensionally-defined 
set entails the conjunctive extension of the predicate 
with additional terms. The basis for these terms are 
deferred decisions that express differences in behavior 
that customers in a target market need a program to 
exhibit (and that establish why a single program will 
not suffice). The motivations for having different 
programs are sufficient as the determining factors that 
allow us to distinguish among them. Conversely, two 
programs will be considered equivalent, no matter how 
different they are otherwise, if their targeted market 
sees no purposeful difference in behavior between 
them.
As noted by Dijkstra and Parnas, such decisions guide 
engineers in determining how a particular program is to 
be realized. A particular program can be realized only 
after these deferred decisions have been resolved, 
expressing the needs of a particular customer. Different 
decisions lead to different programs being realized.
An advantage of using deferred decisions to 
characterize differences among programs is that there is 
no need to appeal to the physical realizations (source or 
object expressions) of those programs. Instead, the 
representational and behavioral expressions of each 
program are determined, within the context of a family, 
by how these decisions are resolved.

3.7 A DECISION MODEL FOR A PROGRAM FAMILY

Formalization of the set of decisions that discriminate 
among the instances of a program family fi is referred to 

�5



December 13, 2016

as the family’s decision model. There is a precise 
canonical form for expressing a decision model.
A decision model Dfi for program family fi is a set of 
decisions (d1, d2, ..., dn) that formalize how programs 
in fi differ. A fully resolved decision model is one for 
which all required decisions have been resolved. The 
mapping from Dfi to Ufi is one to many: every 
resolution of Dfi determines one or more instances of Ufi 
and each instance of Ufi is designated by exactly one 
resolution of Dfi.
It is presumed that the need for a program in fi is known 
but which of those programs is not known. Decisions 
can be thought of informally as questions that have 
been deferred and must be answered in order to select 
the instance of fi that best fits the perceived need.
There is a default scheme for characterizing individual 
decisions. Each decision is named and can be either 
required or optional. Each decision is one of three types:

• discrete: a simple choice, optionally having an 
associated value in a designated target notation 
(e.g., the notation in which a program's source is 
expressed)

• composite: a set of M constituent decisions, each 
constituent being optional or required

• repeating: an ordered, indeterminate number of 
uniformly defined constituent decisions

Any (partial or complete) resolution of the decision 
model Dfi for fi corresponds to a subset of Ufi. Each such 
subset comprises a set of equivalent instances of fi 
relative to resolved decisions. The set of all possible 
complete resolutions of Dfi defines a partitioning of Ufi 
such that each instance of fi is a member of exactly one 
subfamily whose instances constitute an equivalence set 
within Ufi.
Instances of a subfamily, defined by a partial resolution 
of Dfi, can later be distinguished from each other 
through the resolution of remaining unresolved 
decisions. In this way, by progressively resolving 
elements of Dfi, continuing to defer decisions in areas of 
uncertainty, the set of programs can be narrowed to 
those that are a better fit to a particular customer's 
needs; potentially, multiple alternative solutions can be 
derived to empirically evaluate and resolve 
uncertainties concerning the best fit to actual needs.
Similarly, instances of a fully resolved equivalence 
subset can be distinguished only by extending Dfi. 
Although the programs in such a subset are 
characterized by the same resolution of Dfi, they would 
nevertheless differ in some unspecified, presumably 
incidental, aspects. If meaningful differences in these 
programs are discovered, the ambiguity can be resolved 
simply by adding decisions to Dfi (possibly only with 
respect to the programs in that subset), so as to further 
partition this subset to account for those differences.

4. FORMULATING A METRIC SPACE

A metric space defines a topology over an abstract space 
containing the members of a set S of objects [6]. The 
properties of a metric space define a relationship among 
members s1, s2, and s3 of S in terms of an associated 
non-negative "distance" metric d (S, S):
(1) d (s1, s2) = 0 if and only if s1 = s2  [identity]
(2) d (s1, s2) + d (s2, s3) >= d (s1, s3)  [triangularity]
(3) d (s1, s2) = d (s2, s1)  [symmetry]
These properties define the criteria for any measure of 
distance between members of S within the containing 
space.

4.1 OBJECT IDENTITY IN A METRIC SPACE

To satisfy the identity property for a metric space, a 
metric must exist that can determine the equality of 
contained objects.
There are in general two ways of framing object identity. 
The more common is to view objects as mutable, having 
identities that are extrinsically fixed and independent of 
any changes in an object’s properties or composition. 
For example, a river retains its identity even as its 
constituent water changes or its course varies over time. 
The same holds for people: changing any particular 
attribute such as hair color, an organ, or finger prints 
does not constitute a change in identity.
Conventionally, this view of identity has prevailed for 
software as well: modifying a program is not viewed as 
creating a different program but merely as changing 
only selected aspects of that program. Analogously, a 
“new” program can be created as an identical copy of an 
existing program and then exist with a separate identity 
independent of the copied program.
This conception of programs as mutable presents a 
dilemma for an intensionally-defined set. With mutable 
programs, set membership would be unstable: changes 
to a program’s properties could cause it to move into or 
out of set membership or equivalence to other members 
of the set. Furthermore, changing a program could have 
the indirect effect of making two different programs 
identical, violating the identity property for a metric 
space. We would not know whether two programs were 
actually equal except by knowing how they came to 
exist, whether as the same object with differing 
properties or as different objects even if their properties 
are identical.
With objective framing, identity is determined based 
strictly on the (immutable) properties of each program 
considered. The properties of a program cannot 
“change” – different values connote a different program. 
With this framing of identity, we can distinguish two 
programs simply by comparing their properties.
Conventional software practices are clearly sufficient to 
build a needed program with some degree of certainty. 
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The reason for this is that developers do not actually 
know which program they are building until it is 
complete: they know neither the exact form of its 
representation nor its exact behavioral properties. 
Instead they iteratively refine the representational 
expression of the needed program until it sufficiently 
approximates specified behavioral properties. The way 
to think of this if programs are viewed as immutable is 
that developers iteratively search the space of potential 
programs to find one that adequately satisfies their 
needs.
The intent with a program family is to in fact approach 
derivation of programs as being a search through a 
space of similar immutable programs. This search is 
guided by what from a customer perspective are the 
properties of a needed program for a best (possibly 
approximate) fit within that space. Selecting a program 
becomes a process of progressively reducing the space, 
through the tightening of similarity criteria, until a 
single program is identified.

4.2 PSEUDO-METRIC SPACES

The identity property for a metric space is strict: the 
distance between two objects cannot be zero unless the 
objects are identical. For some purposes, this is overly 
strict. It can be useful to associate objects that are not 
identical but that are similar enough to be considered 
interchangeable. Substituting the equivalence relation in 
place of equality for a more flexible definition of 
identity determines a relaxed form of metric space 
known as a “pseudo” metric space:
(1) d (s1, s2) = 0  if and only if s1 ~~ s2 [identity]
In a pseudo-metric space, the distance between any two 
members of S will be zero if they are either identical or 
equivalent; the distance metric for a space must 
encapsulate the criteria for what constitutes equivalent 
objects in that space.
Given a pseudo-metric space for a set Ux, an equivalent 
metric space can be derived by defining a subset Ux′ of 
Ux in which collections of equivalent members of Ux 
are replaced by single archetypal instances. This entails 
partitioning the members of Ux into a collection of 
subsets Uxi (i = 1..n) such that each Uxi contains only 
equivalent members. By this, each member of Ux is 
mapped into exactly one Uxi. For each Uxi, one member 
would be chosen as its archetype and added to the Ux′ 
subset of Ux. The resulting set Ux′ will have exactly the 
same number of members as Ux has equivalence 
subsets. The pseudo-metric d can then be reframed as a 
metric for Ux′, which containing no equivalent 
instances, will satisfy the stricter identity property 
required for a metric space.

5. A DISTANCE METRIC FOR A PROGRAM 
FAMILY

To define a metric space for a set of programs 
comprising a program family, we will interpret 
difference as being a measure of distance: the distance 
between two programs is a measure of how different 
they are. The distance between a program and itself is 
zero (also between any two equivalent programs in a 
pseudo-metric space). The distance between any other 
pair of programs will be greater than zero. We will show 
how differences between instances of a program family 
can be expressed and used to compute a distance metric 
for a pseudo-metric space. We can then apply the simple 
pseudo-metric-to-metric transformation to create a 
condensed but equivalent program family that, using 
the same distance metric, will constitute a proper metric 
space.
With a program family, we have a set of programs that 
we have established as being similar due to the 
intensional predicate for the set; programs that are not 
in that set are of no further interest. From a decision 
model for distinguishing instances of a family fi, we 
have criteria that can be used to describe how any two 
programs in Ufi differ.
A decision model only indirectly expresses how 
programs differ; what it expresses directly are the 
considerations that cause customers to need different 
programs. This is a sufficient basis for describing 
program differences because all more intrinsic 
differences must be traceable to the differences that 
matter to customers. We have no reason to distinguish 
between programs whose differences are not of interest 
to the customers in a targeted market. A key feature of 
this approach is that programs can be characterized and 
related to each other within the metric space without the 
programs having been built.
To define a pseudo-metric space for the family, we only 
need a means to compute a distance pseudo-metric for 
the set based on the decision model. By distinguishing 
between programs by the differences in how the 
decision model is resolved for each program and 
defining a computation that quantifies this difference, 
we create a metric that can be interpreted as the distance 
between any two instances of a program family.

5.1 A SIMPLE METRIC

From a decision model associated with fi, there is a 
simple way and a complex way to define a metric that 
will satisfy pseudo-metric criteria. The decision model 
defines the choices that a developer needs to have 
resolved in order to know which member of a program 
family corresponds to what a customer needs. Every 
program in Ufi is characterized by a specific resolution 
of the decision model. Any complete resolution of the 
decision model will designate a subset of Ufi that 
satisfies the indicated criteria.
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The simple alternative is to define what is known as a 
discrete metric for the family: for each pair of programs 
p1 and p2 that are members of the family, d (p1, p2) = 0 
if and only if p1 and p2 are equivalent programs (i.e., 
characterized by identical resolutions of the decision 
model), otherwise 1.
The limitation of the discrete metric is that it is overly 
simple, treating all differences as being equally 
weighted. However, it does define a partitioning of Ufi 
into equivalence subsets. Programs in an equivalence 
subset are interchangeable with respect to decision 
model criteria for fi, that is, they do not differ in any 
way that matters to customers. If a customer’s needs are 
met by the instances of a particular equivalence subset, 
any instance of that subset can be chosen arbitrarily as 
all provide equivalent behavior, in the view of 
customers in the targeted market.

5.2 A COMPLEX METRIC

A more useful metric can be defined as the computation 
of an actual difference value between any two instances 
p1 and p2 of a program family. Because each instance of 
a family is characterized by a resolution of the family's 
decision model, an analysis of the differences in the 
decision model resolutions for p1 and p2 is a sufficient 
basis for such a metric. This has the advantage over the 
simple metric of giving a more accurate approximation 
of how much difference there is, from a customer 
perspective, between p1 and p2. In addition, it may be 
feasible to identify programs that are a better fit to some 
need by first finding an inferior fit and then examining 
“near by” programs that differ favorably with respect to 
that need.
For a complex metric, the distance between two 
programs is computed in terms of the difference 
between their associated decision model resolutions. 
The relative importance of a decision is determined by 
its level in the hierarchy of decisions represented by the 
decision model. A first approximation to computing the 
value of a more precise distance metric has four 
elements:
(1) For any optional decision di, d (p1, p2) = 0 if  both di 

(p1) and di (p2) are omitted, or 1 if one is omitted 
but not the other, otherwise evaluate according to 
decision type

(2) For each discrete decision di, d (p1, p2) = 0 if di (p1) 
= di (p2), otherwise 1

(3) For each composite decision di, d (p1, p2) = the sum 
of constituent decision metric values divided by the 
total number of constituent decisions M

(4) For each repeating decision di, d (p1, p2) = the 
pairwise sum of constituent decision metric values 
divided by the greater of the number of component 
decision values comprising p1 and p2

Each of these computations will result in a rational (real) 
value between 0 (identical decisions) and 1 (no 

decisions in common at all). For the purpose of 
computing the aggregate distance metric for programs 
p1 and p2, the decision model itself is treated as a 
composite decision.

5.3 FURTHER METRIC REFINEMENTS

The complex method as described yields a metric that 
may suffice but is still not an entirely comprehensive or 
precise measure of the differences between two 
programs. Rather it provides an approximation of how 
much two programs differ in the aspects (only and most 
importantly) that matter most from a customer 
perspective.
Three minor refinements, and perhaps others, could 
make this metric more precise:

• Treat any required decision that is unresolved as if 
it were optional in computing an interim metric; 
this will result in a value that is the lower bound on 
the difference between two programs.

• For a target-valued discrete decision, compute the 
metric to be proportional to the degree of 
difference in the decision's values (i.e., using a 
string metric to compute a value between 0, a 
perfect match, and 1, no match at all).

• For a repeating decision, discount component 
ordering by computing the metric as an average of 
the metric values obtained under all reorderings of 
the decision value having more elements.

5.4 A STRATEGY FOR DEFINING A PROGRAM 
FAMILY METRIC SPACE

The set of programs Ufi comprising program family fi 
and the simple distance metric applied to the decision 
model associated with fi defines a pseudo-metric space. 
The simple metric effectively partitions Ufi into 
equivalence subsets. Each of these subsets is collapsed 
into a singleton by the arbitrary selection of any one of 
its equivalent instances.
The programs from these singleton subsets constitute a 
subset Ufi′ of Ufi, such that Ufi′ consists entirely of 
programs that are one-to-one uniquely selected by 
resolutions of Dfi. Each possible resolution of Dfi will 
select exactly one and only one instance of Ufi′, 
satisfying the strict identity property for a metric. 
Associating the complex metric with the reduced set 
Ufi′, which is behaviorally equivalent to Ufi, defines a 
metric space that quantifies the substantive differences 
among instances of fi′.
This formulation of a program family as the set of 
programs Ufi′ and the complex metric, with all instances 
of the family characterized in terms of a single decision 
model, satisfies the identity, triangularity, and symmetry 
properties for a metric space. Per the identity property 
of a metric space, and due to the reduction of all 
equivalent subsets to singleton sets, each full resolution 
of the decision model selects exactly one program.
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5.5 PRACTICAL RELEVANCE OF A PROGRAM FAMILY 
METRIC SPACE

The intrinsic value of formulating a program family as a 
metric space is that it gives an objective mathematical 
interpretation to the concept of similarity among 
programs. It provides a basis for viewing programs as 
abstract conceptions that have many physical 
realizations, differing in both essential and incidental 
aspects. It provides a medium for exploring how and 
why programs differ, based on why different programs 
are needed rather than on the superficial basis of their 
physical representation or the more complex basis of 
how to accurately formalize the many facets of behavior.
The practical value of the metric comes in using it as a 
measure of the distance between a “theory” of the 
needed program and individual instances of the 
program family that can be built (i.e., how well each 
program satisfies a particular set of needs). Using the 
decision model, we describe an envisioned program 
that will satisfy a customer’s needs. We then (in 
principle) determine the distance between that 
envisioned program and each of the instances of the 
program family in order to find an instance that best 
matches those needs. Ideally we will find a program 
that has a distance metric of zero to the envisioned 
program.
An incomplete resolution of the decision model, 
corresponding to an incomplete program theory and 
suggesting uncertainty about needs, inherently implies 
multiple alternative programs (just as the whole 
decision model implies the entire set of constructible 
programs comprising the family). Choosing among 
multiple programs presumes being able to specify and 
compare multiple resolutions of the decision model, 
possibly going so far as building models of alternative 
programs for analysis or even full realizations for 
comparative empirical evaluations. The distance from 
the incomplete program theory to each of these 
programs can be determined inversely by describing the 
decisions that would result in each program. Another 
alternative is to generalize the program theory by 
deferring resolution of some decisions beyond program 
derivation, emulating a subset of the program family as 
a hybrid program that requires resolution of deferred 
decisions during program operation.

6. PRODUCT FAMILIES AS A GENERALIZATION 
OF PROGRAM FAMILIES

The generalization from programs to products is 
straightforward. A product family is simply a set of 
similar products, each of which conveys one instance of 
a corresponding program family. Beyond being the 
conveyance of a program, a product includes all of the 
elements and artifacts entailed in creating and 
instituting the means for operation of a business process 
within an enterprise.

In simple terms, a product is everything (e.g., 
specifications, a program realized as software and/or 
hardware components, quality criteria, materials for 
installation/validation/training/use) needed for the 
provision of a capability to an enterprise: a product is a 
means for instituting changes in how an enterprise 
operates.
Each product, by convention, extends and frames a 
particular program, but the same program may be 
conveyed by multiple products. With a product family 
being the extension of a conveyed program family, the 
decision model associated with the program family is 
also a sufficient starting point for distinguishing among 
the instances of the product family. Resolution of this 
decision model determines a specific program and, at 
least partially, determines its conveying product (or 
more precisely, a set of potential conveying products).
Analogous to the program family it conveys, a product 
family fi is conceived as an intensionally-defined subset 
Ufi of the set U of all such products. Existing products 
that belong to this set, having each been physically 
realized and deployed into use, constitute an 
extensionally-defined subset of Ufi. (Synthesis defined a 
product line as being this subset.) The membership of 
this subset evolves as new instances of the product 
family are built.
If there is only a single instance product for conveying 
each program, the product family constitutes a metric 
space based on the same decision model-derived metric 
as the subsumed program family. If any programs are 
conveyed by multiple products, we can view the set of 
products associated with each such program as an 
equivalence subset of the product family. In this case, 
the product family reverts to being a pseudo-metric 
space.
By deferring considerations that are discriminators 
among products but not of the programs that they 
convey, we can still rely on the program family metric 
for determining the best fitting program and then 
choose among the set of conveying products based on 
how they differ. Product differences are typically 
independent of conveyed program differences and 
concern conventions of product packaging or business 
process transition as instituted by the targeted 
enterprise. A product-options extension to the program 
family decision model is easily defined to account for 
these product discriminators, resulting in a metric space 
for the family of complete products.

On First Conceiving a Product Family
Synthesis was conceived based on an understanding of 
how to express a product family in aggregate as the 
basis for a product generator and a streamlined product 
manufacturing (i.e., application engineering) process. 
However, lacking an effective criteria for limiting the 
scope of a product family, there was not a disciplined 
way to limit the effort required to do this. The answer 
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lay in two determinations that any effective 
manufacturing enterprise must make:

• (domain) What type of products do we have the 
competence (knowledge, experience, and 
expertise) to build?

• (coherent market) What capabilities would 
customers, having similar needs for such 
products, need now and in the future?

These suggest a potential convergence between a 
supplier’s capabilities and their customers’ needs. A 
coherent market represents what customers need, a 
domain represents similar products that a supplier has 
the ability to build. A domain that aligns to a market 
constitutes a business opportunity. An effective domain-
market pair will be mutually defining, co-dependent, 
and co-evolving.
Domain knowledge is expressed in the aggregate 
representation of the product family; domain expertise 
is expressed in the process for the manufacture 
(specification, evaluation, and generation) and 
deployment of instances of the product family; and 
domain experience resides in the people who comprise 
the organization.
As a practical matter, in the realization of a product 
family, formalization of the intensional predicate that 
characterizes included products would be extremely 
complex and entail significant effort (consider that this 
predicate would have to characterize how the 
envisioned products differ from all other conceivable 
products). Instead, in practice, it suffices to express this 
predicate informally in a set of assumptions of 
“commonality” that define what distinguishes included 
products from those excluded. (In fact, these 
assumptions might reasonably be formalized as terms in 
a corresponding, though possibly incomplete, predicate, 
but the benefit of doing so is not evident.) These 
assumptions suffice as the basis for creating a concrete, 
aggregate realization of the corresponding product 
family. Customized products can then be “selected” (i.e., 
derived) from this representation based on resolution of 
the associated decision model.
In reality, the aggregate realization of a product family 
serves as a de facto formalization of the intensional 
predicate, establishing exactly what products are 
included: any product that can be derived from the 
family is included and all others are excluded. In 
practice, however, a domain is typically conceived as 
including products that are not initially derivable. One 
option in this case is to derive an approximation of a 
needed product by modifying the corresponding 
resolution of the decision model so that it describes a 
product that can be derived but is a “close”, rather than 
exact, fit to customer needs. In any case, a domain will 
inevitably evolve over time both to accommodate 
initially unsupported products and, along with its 
corresponding intensional predicate, to account for 
changing market needs.

7. SUMMARY

This paper has offered a mathematical formulation for 
understanding the concept of a product family. Based 
on set and metric space theories, this formulation 
establishes similarity as a mathematical relationship 
over a set of products that are perceived intuitively as 
being similar. This may allow us to better formalize the 
process and mechanisms by which customized products 
as a best fit to a customer’s needs can be efficiently 
manufactured and revised as those needs change.
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